

#### Assessing Land Degradation and Identifying Corresponding Conservation Measures at the Sub-National Level in Lebanon

#### In the framework of the Sustainable Land Management in the Qaraoun Catchment project



Sixth Mediterranean Forest Week

Broumana | 01-05 April 2019

Presented by: Dr. George Mitri, Institute of Environment, University of Balamand

### PROJECT

Sustainable Land Management in The Qaraoun Catchment Budget: USD 3,487,671 Funding source: GEF & UNDP (cash) Project duration: 4 years (2016-2020) Implementing Agency: Ministry of Environment Executing Agency: UNDP



### **BACKGROUND INFORMATION**

- Land degradation is the reduction in the capacity of the land to provide ecosystem goods and services, over a period of time, for its beneficiaries (LADA 2013).
- Attaining <u>"Land Degradation Neutrality (LDN)</u>" worldwide by 2030 is the main objective of target 15.3 of the Sustainable Development Goal 15
- LDN represents "a state whereby the amount and quality of land resources, necessary to support ecosystem functions and services and enhance food security, remains stable or increases within specified temporal and spatial scales and ecosystems" (UNCCD 2019).

### **JUSTIFICATION OF WORK**

- As land degradation becomes of increasing concern, governments tend to increase their efforts in <u>land monitoring programs</u> which aim to promote more sustainable land uses.
- From a scientific perspective, a <u>standardized approach</u> for <u>mapping</u>, <u>assessing</u> and <u>monitoring</u> land degradation is essential for decision makers to discuss and compare the characteristics of land degradation with other areas and to reverse degradation and implement land <u>conservation techniques</u>.

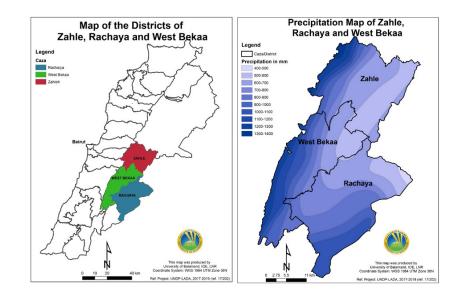
### **NEED FOR RELIABLE ASSESSMENT**

- <u>Reliability</u> of existing assessments has been often questioned mainly due to the differences in definitions of land degradation and methods for assessment (which have been mostly designed in function of data availability.)
- Traditionally, the evaluation of trends in agricultural productivity has been used to assess land degradation (this technique is not precise and is considered biased, since the crop productivity can be affected by other factors than degradation, such as climatic events, rainfall, pest and diseases ).
- Assessment methods, such as the "Land Degradation Assessment in Drylands (LADA)" approach aim at incorporating multiple data sources (LADA 2013).

### **NEW OUTCOMES ON LAND DEGRADATION**

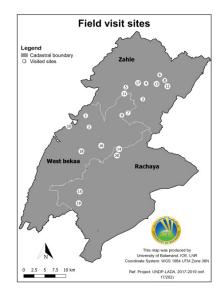
- In 2016, new outcomes have been issued from the expert meeting on land degradation (Sustainable Development Goal 15 - SDG target 15.3) held in Washington, DC.
- It was agreed that monitoring and reporting on the indicator for <u>SDG target 15.3</u> "proportion of land that is degraded over total land area" must primarily be based on national official data sources and should take advantage of existing reporting mechanisms.
- A consensus that this indicator is assessed and monitored based on analyzing three subindicators (i.e., <u>landcover/land-use change</u>, <u>land productivity</u> and <u>soil organic carbon</u>).

#### **AIM AND OBJECTIVES**

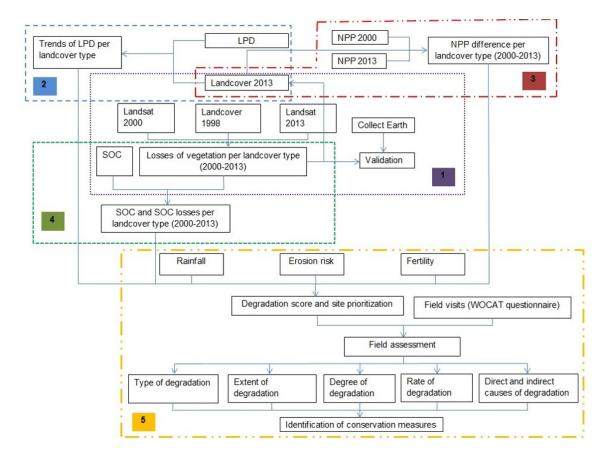

> The <u>aim</u> of this study was to develop a systematic approach for assessing land degradation at the sub-national level with the combined use of geo-spatial information and field data.

#### > The **specific objectives** were to:

- 1.Assess trends in land degradation and the impact of historical land-uses on the current landscape characters.
- 2. Investigate and characterize principal criteria of land degradation.
- 3. Identify land conservation measures.


### **STUDY AREA DESCRIPTION**

- The study area comprised the administrative districts of Zahleh), Rachaya (545 km<sup>2</sup>) and West Bekaa (445.1 km<sup>2</sup>) in the Qaraoun catchment in Lebanon.
- Total population (i.e., Lebanese citizens and registered Syrian refugees): 557,584 inhabitants.
- ➢ Elevation: 800 1100 meters above sea level.
- Climatic zones: semi-arid (i.e., 400-600 mm), sub-humid (i.e., 600-1200 mm), and moist subhumid (i.e., 1200-1500 mm).

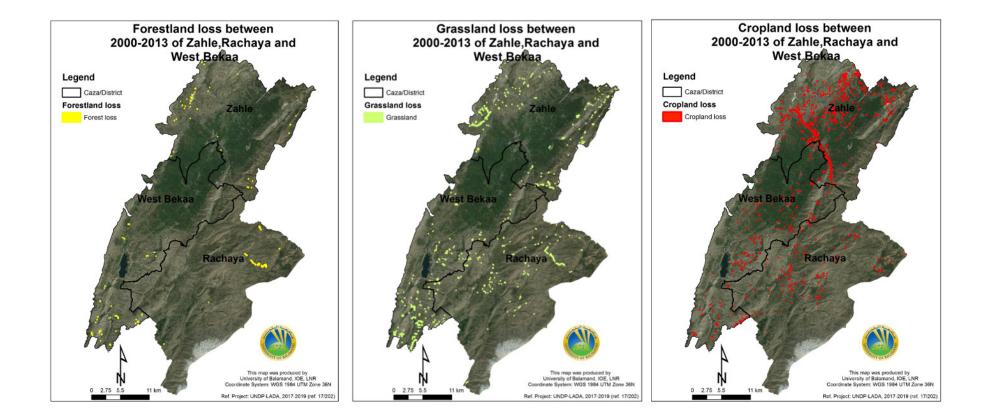



## **DATASET DESCRIPTION**

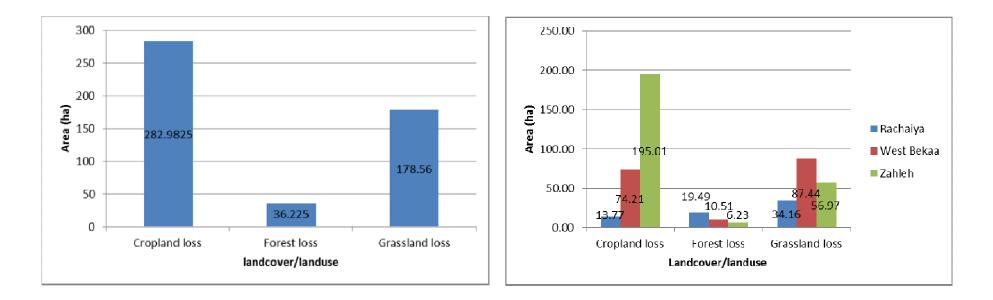
| Type of data                           | Source                                                                                        | Involved metric(s)                                           |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Online database, Global<br>databases   | MODIS (MOD17A3H Version 6 product)                                                            | Net Primary<br>Productivity (NPP)<br>(2000-2013)             |  |
| Land Productivity Dynamics (LPD)       | Joint Research Center (Cherlet et al. 2014)                                                   | LPD (2000-2013)                                              |  |
| Soil Organic Carbon (SOC) stock<br>map | International Soil Reference and<br>Information Centre's (ISRIC – World Soil<br>Information). | Changes in SOC                                               |  |
| Satellite imagery                      | Landsat images acquired on 4-10-2000 and 6-9-2013                                             | Landcover/land-use<br>changes                                |  |
| Landcover/land- use                    | Landcover/land-use maps of 1998 (base-<br>map) of MOA (2002) and landcover map<br>of 2013     | Landcover and<br>landcover changes                           |  |
| Thematic maps                          | Erosion risk map; fertility map; rainfall map<br>as published by CDR (2004)                   | Prioritization of lands prone to degradation                 |  |
| Field data                             | Use of WOCAT questionnaire for 20 field visited sites                                         | Identification of types<br>and causes of land<br>degradation |  |



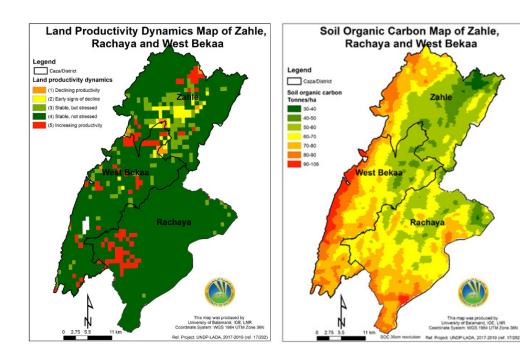
### **METHODOLOGY OF WORK**



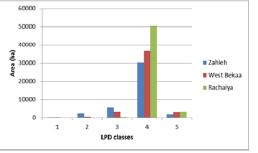

### **SCORING DEGRADATION**

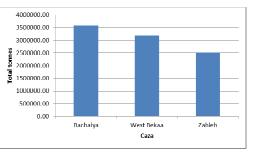

**Degradation score** = 35%xNPP + 25%xLPD + 15%xErosion + 10%xFertility + 10%SOC + 5%xRainfall

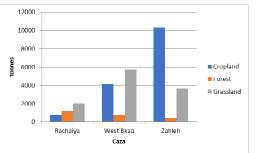
| Factors/GIS layers | Assigned<br>weights | Category values<br>(from least prone to degradation i.e., 1, to most prone to degradation, i.e., 2) |                        |                      |  |
|--------------------|---------------------|-----------------------------------------------------------------------------------------------------|------------------------|----------------------|--|
|                    |                     | 3                                                                                                   | 2                      | 1                    |  |
| NPP                | 35%                 | [-4.48; -1.1]                                                                                       | [-1.09; -0.39]         | [-0.38; 0]           |  |
| LPD                | 25%                 | Decline                                                                                             | Early signs of decline | Stable, but stressed |  |
| Erosion            | 15%                 | Very high risk                                                                                      | High risk              | Medium risk          |  |
| Fertility          | 10%                 | Low                                                                                                 | Moderate               | High                 |  |
| SOC (t/ha)         | 10%                 | [18; 52[                                                                                            | [52; 76[               | [76; 108]            |  |
| Rainfall           | 5%                  | Semi-arid                                                                                           | Sub-humid              | Moist sub-humid      |  |


# **RESULTS: LOSSES IN VEGETATION COVER (1)**

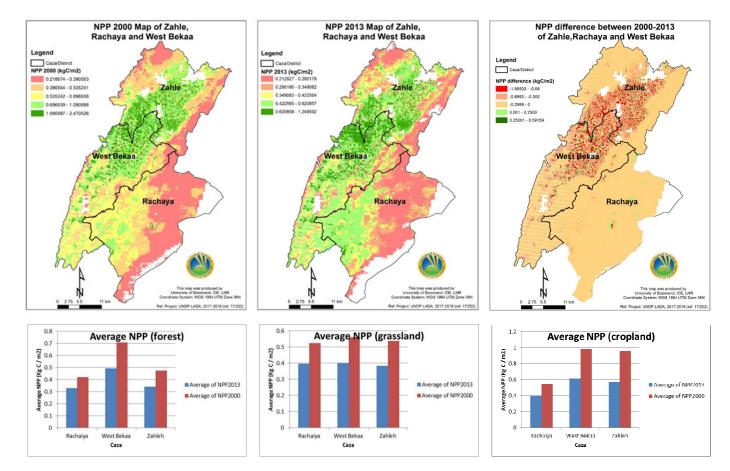



### **RESULTS: LOSSES IN VEGETATION COVER (2)**





Total losses of vegetation cover (left) and losses of vegetation cover per district (right)

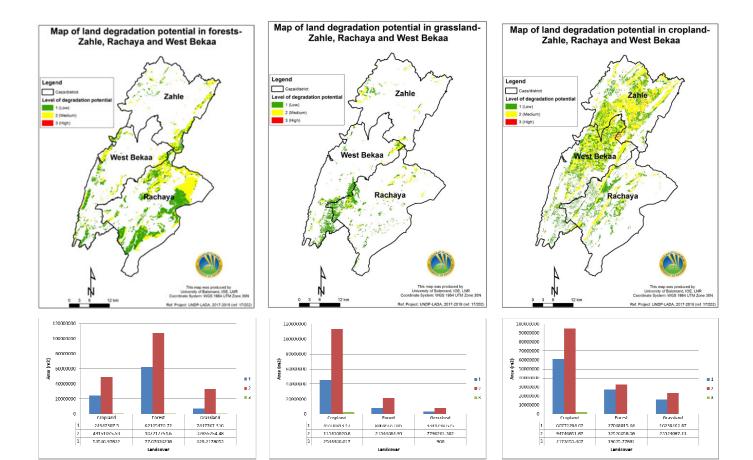



## **RESULTS: PRODUCTIVITY AND SOC (1)**







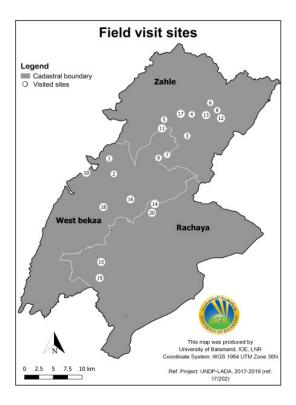

#### **RESULTS: NPP**



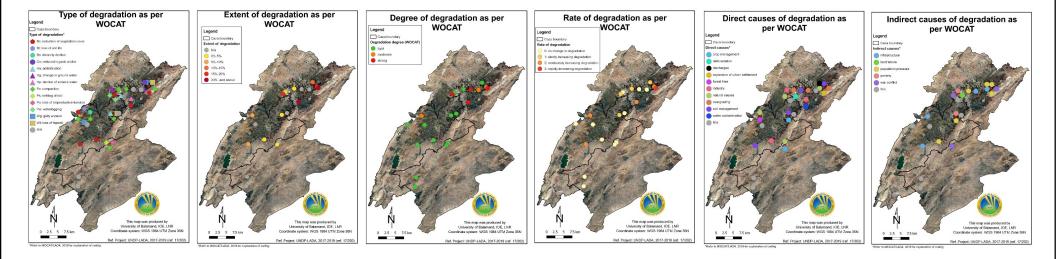
## **RESULTS: SUMMARY TABLE**

| All study area                                      | Forest    | Cropland  | Grassland |
|-----------------------------------------------------|-----------|-----------|-----------|
| Initial cover in 2000 (ha)                          | 27,534.37 | 46,685.88 | 9,939.12  |
| Loss in vegetation cover between 2000 and 2013 (ha) | 36.22     | 282.98    | 178.56    |
| LPD of 2000-2013 class 1 (ha)                       | 66.78     | 589.41    | 0         |
| LPD of 2000-2013 class 2 (ha)                       | 11.16     | 2779.65   | 16.47     |
| LPD of 2000-2013 class 3 (ha)                       | 836.82    | 4,986.63  | 248.22    |
| LPD of 2000-2013 class 4 (ha)                       | 24,019.92 | 31,050.63 | 8,255.34  |
| LPD of 2000-2013 class 5 (ha)                       | 787.14    | 4,201.83  | 657.27    |
| Average NPP in 2000 (kg C/m²)                       | 0.53      | 0.83      | 0.54      |
| Average NPP in 2013 (kg C/m²)                       | 0.39      | 0.53      | 0.39      |
| Total SOC in 2013 (†)                               | 1,895,941 | 2,890,833 | 671,951.2 |
| Loss in SOC (2000-2013 in t)                        | 2,405.78  | 15,155.73 | 11,382.95 |

### **RESULTS: AREAS PRONE TO DEGRADATION**




### **RESULTS: WOCAT ASSESSMENT**


A threshold of 1.75 was considered to filter out low-moderate to least prone to degradation areas. As a result, a total of 20 polygons/sites were identified for surveying in the field.

The WOCAT tool was applied in the field in order to assess the following criteria:

- > Type of degradation
- Extent of degradation
- Degree of land degradation
- Rate of degradation
- Direct and indirect causes of land degradation



### **RESULTS: WOCAT ANALYSIS**



## **RESULTS: PHOTOS FROM THE FIELD**



# **RESULTS: PROPOSED CONSERVATION MEASURES (1)**

| Site | Degradation addressed                                | Name of the<br>technology                                   | Conservation group | Conservation<br>sub-group                                     | Prevention /<br>mitigation/<br>rehabilitation |
|------|------------------------------------------------------|-------------------------------------------------------------|--------------------|---------------------------------------------------------------|-----------------------------------------------|
| 1    | Gully erosion                                        | Contour planting                                            | Vegetative         |                                                               | Prevention from<br>heavy rainfall             |
|      | Compaction                                           | Breaking compacted subsoil                                  | Agronomic          | Sub-surface treatment                                         | Mitigation                                    |
|      | Diversity decline                                    | Rotational cropping                                         | Management         | Change of                                                     | Mitigation                                    |
|      | Loss of soil life                                    |                                                             |                    | management/<br>intensity level                                |                                               |
| 2    | No field observation of any type of degrad           | ation                                                       |                    |                                                               |                                               |
| 3    | Reduction of vegetation cover                        | Mulching and<br>applying compost<br>and mineral fertilizers | Agronomic          | Vegetation/soil cover<br>and organic<br>matter/soil fertility | Mitigation                                    |
|      | Decline of surface water quality                     | Water harvesting                                            | Structural         | Water treatment                                               | Prevention and mitigation                     |
| 4    | No field observation of any type of degradation      |                                                             |                    |                                                               |                                               |
| 5    | Waterlogging                                         | Waterways                                                   | Structural         | Graded ditches/<br>waterways                                  | Mitigation                                    |
| 6    | Fertility decline and reduced organic matter content | Mulching and<br>applying compost<br>and mineral fertilizers | Agronomic          | Vegetation/soil cover<br>and organic<br>matter/soil fertility | Mitigation                                    |
| 7    |                                                      |                                                             |                    |                                                               |                                               |
| 8    | Surface erosion                                      | Contour planting                                            | Vegetative         | Tree and shrub cover                                          | Mitigation                                    |
|      | Gully erosion                                        |                                                             |                    |                                                               | Mitigation                                    |
|      | Change in groundwater                                | Water harvesting                                            | Structural         | Surface water storage                                         | Prevention and mitigation                     |
| 9    | Compaction                                           | Breaking compacted subsoil                                  | Agronomic          | Sub-surface treatment                                         | Mitigation                                    |
|      | Surface erosion<br>Aridification                     | Mulching                                                    | Agronomic          | Vegetation/soil cover                                         |                                               |

# **RESULTS: PROPOSED CONSERVATION MEASURES (1)**

|    | 10 | No field observation of any type of degradation                |                                                             |            |                                                            |                |
|----|----|----------------------------------------------------------------|-------------------------------------------------------------|------------|------------------------------------------------------------|----------------|
| 11 |    | Aridification                                                  |                                                             |            |                                                            | Mitigation     |
|    |    | compaction                                                     | Breaking compacted subsoil                                  | Agronomic  | Sub-surface treatment                                      |                |
|    |    | Change in groundwater                                          | Water harvesting                                            | Structural | Surface water storage                                      | Prevention and |
|    |    | Waterlogging                                                   | Waterways                                                   | Structural | Graded ditches/<br>waterways                               | mitigation     |
|    |    | Reduction of vegetation cover                                  | Mulching and applying<br>compost and mineral<br>fertilizers | Agronomic  | Vegetation/soil cover and<br>organic matter/soil fertility | Mitigation     |
| 12 | 12 | Reduction of vegetation cover                                  | Mulching and applying<br>compost and mineral<br>fertilizers | Agronomic  | Vegetation/soil cover and<br>organic matter/soil fertility | Mitigation     |
|    |    | Compaction                                                     | Breaking compacted subsoil                                  | Agronomic  | Sub-surface treatment                                      |                |
|    | 13 | No field observation of any type of degradation                |                                                             |            |                                                            |                |
|    | 14 | No field observation of any type of degradation                |                                                             |            |                                                            |                |
|    | 15 | No field observation of any type of degradation                |                                                             |            |                                                            |                |
|    | 16 | Reduction of vegetation cover                                  | Mulching and applying<br>compost and mineral<br>fertilizers | Agronomic  | Vegetation/soil cover and<br>organic matter/soil fertility | Mitigation     |
|    | 17 | Compaction                                                     | Breaking compacted subsoil                                  | Agronomic  | Subsurface treatment                                       | Mitigation     |
|    | 18 | Reduction of vegetation cover                                  | Mulching and applying<br>compost and mineral<br>fertilizers | Agronomic  | Vegetation/soil cover and<br>organic matter/soil fertility | Mitigation     |
|    | 19 | No field observation of any type of degradation                |                                                             |            |                                                            |                |
|    | 20 | Compaction                                                     | Breaking compacted subsoil                                  | Agronomic  | Sub-surface treatment                                      | Mitigation     |
|    |    | Loss of bio-productive function<br>Subsidence of organic soils | Mulching and applying<br>compost and mineral<br>fortilizone | Agronomic  | Vegetation/soil cover and organic matter/soil fertility    |                |

### CONCLUSIONS

- A systematic methodological approach for mapping and assessing land degradation in Lebanon with the combined use of geo-spatial information and field data was established.
- This resulted in identifying conservation measures to <u>reduce, mitigate and prevent</u> land degradation at the sub-national level.
- Areas characterized by <u>semi-arid to sub-humid environment</u> were mostly characterized by decreasing productivity, early sign of decline and stable but stressed productivity.
- Future work includes implementing conservation measures on sites of top priority for restoration based on the results of this assessment.

## **CONTACT US**

#### **Ministry of Environment**

Lazarieh Bldg Floor 8 - Room 8-24 Riad El Solh, Lebanon P.O. Box 11-2727 T: +961 (1) 976555 # 445 F: +961 (1) 976531



### **Thank You**